By : DRS.Gusti bagia Mulyadi |
“Bagaimana cara belajar matematika yang benar?”
“Belajar matematika adalah belajar hidup. Matematika adalah jalan hidup.”
“Belajar matematika adalah belajar hidup. Matematika adalah jalan hidup.”
Trachtenberg mempertaruhkan jiwanya menentang Hitler. Trachtenberg, setelah
menyelami prinsip-prinsip matematika, menyimpulkan bahwa prinsip kehidupan
adalah keharmonisan.
Peperangan yang terus berkobar, menyulut kebencian
tidak sesuai dengan prinsip-prinsip matematika. Matematika adalah keindahan. Atas penentangannya ini, Hitler menghadiahi Trachtenberg
hukuman penjara. Bagi Trachtenberg, perjara bukan apa-apa. Di dalam penjara,
dia justru memiliki kesempatan memikirkan matematika tanpa banyak gangguan.
Karena sulit mendapatkan alat tulis-menulis, Trachtenberg mengembangkan pendekatan
matematika yang berbasis mental-imajinasi.
Seribu tahun sebelum itu, AlKhawaritzmi mengembangkan
disiplin matematika baru: aljabar. AlKharitzmi beruntung hidup dalam lingkungan
agama Islam yang kuat. Ajaran Islam, secara inheren, menuntut keterampilan
matematika tingkat tinggi. Misalnya, Islam menetapkan aturan pembagian waris
yang detil. Pembagian waris sistem Islam melibatkan banyak variabel matematis.
Variabel-variabel yang beragam ini menantang penganut Islam – termasuk
AlKhawaritzmi – untuk mencari pemecahan yang elegan.
Pemecahan terhadap sistem persamaan yang melibatkan
banyak variabel ini membawa ke arah disiplin baru matematika: aljabar.
AlKhawaritzmi menulis buku khusus tentang aljabar yang sangat fenomenal. Buku
yang berjudul Aljabar ini menjadi panutan bagi matematikawan seluruh dunia.
Sehingga nama AlKhawaritzmi menjadi dikenal sebagai Aljabar AlKhawaritzmi
(Algebra Algorithm).
Sistem kalender Islam yang berbasis pada komariah
(bulan, lunar) memberikan tantangan tersendiri. Penetapan awal bulan menjadi
krusial di dalam Islam. Berbeda dengan kalender syamsiah (matahari, solar).
Dalam kalender syamsiah, kita tidak begitu sensitif apa berbedaan tanggal 1
Juni dengan 2 Juni. Tetapi pada sistem komariah, perbedaan 1 Ramadhan denga 2
Ramadhan berdampak besar.
Itulah sebabnya, astronomi Islam dapat maju lebih
awal. Astronomi memicu lebih berkembangnya teori trigonometri. Aturan sinus,
cosinus, dan kawan-kawan berkembang pesat di tangan para astronom Islam waktu
itu.
Ajaran agama Islam adalah jalan hidup. Untuk bisa
melaksanakan ajaran Islam diperlukan matematika. Matematika menjadi jalan
hidup.
Sehebat itukah peran matematika?
Haruskah kita mengambil matematika sebagai jalan hidup?
Haruskah kita mengambil matematika sebagai jalan hidup?
Tidak selalu! Tidak semua orang perlu mengambil matematika sebagai jalan
hidup. Tidak harus semua orang meniru AlKhawaritzmi dan Trachtenberg.
Beberapa orang belajar matematika hanya untuk
kesenangan. Beberapa orang yang lain belajar karena kewajiban. Ada pula yang
belajar matematika agar naik jabatan. Ada juga agar lulus UN, SPMB, UMPTN. Ada
juga untuk menjadi juara.
Masing-masing tujuan, berimplikasi kepada cara belajar
matematika yang berbeda. Misalnya bila Anda belajar matematika untuk
kepentingan lulus UN, SPMB, UMPTN 2008 akan berbeda dengan belajar untuk
memenangkan olimpiade matematika.
Matematika UN, SPMB, UMPTN 2008 hanya menerapkan soal
pilihan ganda. Implikasinya Anda hanya dinilai dari jawaban akhir Anda. Proses
Anda menemukan jawaban itu tidak penting. Jadi Anda harus memilih siasat yang
cepat dan tepat.
Gunakan berbagai macam rumus cepat dalam matematika.
Rumus cepat ampuh Anda gunakan untuk UN, SPMB, UMPTN. Tetapi rumus cepat
matematika tidak akan berguna untuk olimpiade atau kuliah kalkulus kelak di
perguruan tinggi. Anda harus sadar itu.
Contoh rumus cepat matematika yang sering (hampir selalu) berguna ketika
UN, SPMB, UMPTN adalah rumus tentang deret aritmetika.
Contoh soal:
Jumlah n suku pertama dari suatu deret adalah Sn = 3n^2 + n. Maka suku ke-11 dari deret tersebut adalah…
Jumlah n suku pertama dari suatu deret adalah Sn = 3n^2 + n. Maka suku ke-11 dari deret tersebut adalah…
Tentu ada banyak cara untuk menyelesaikan soal ini.
Cara pertama, tentukan dulu rumus Un kemudian hitung
U11. Cara ini cukup panjang. Tetapi bagus Anda coba untuk meningkatkan
keterampilan dan pemahaman konsep deret. Rumus Un dapat kita peroleh dari
selisih Sn – S(n-1) .
Cara kedua, sedikit lebih cerdik dari cara pertama. Kita tidak perlu
menentukan rumus Un. Karena kita memang tidak ditanya rumus tersebut. Kita
langsung menghitung U11 dengan cara menghitung selisih
S11 – S10 = U11
[3(11^2) + 11] – [3(10^2) + 10]
= 3.121 – 3.100 + 11 – 10
= 3.21 + 1
= 64
S11 – S10 = U11
[3(11^2) + 11] – [3(10^2) + 10]
= 3.121 – 3.100 + 11 – 10
= 3.21 + 1
= 64
Cara ketiga, adalah rumus matematika paling cepat dari kedua rumus di atas.
Tetapi sebelum menerapkan cara ketiga, kita harus memahami konsepnya terlebih
dahulu dengan baik.
Are you ready?
Bentuk baku dari n suku pertama deret aritmetika adalah
Sn = (b/2)n^2 + k.n
Un = b(n-1) + a
a = S1 = U1
Bentuk baku dari n suku pertama deret aritmetika adalah
Sn = (b/2)n^2 + k.n
Un = b(n-1) + a
a = S1 = U1
Anda harus pahami konsep di atas dengan baik. Cobalah untuk beberapa soal
yang berbeda-beda. Tanpa pemahaman konsep yang baik, rumus cepat ini akan
berubah menjadi rumus berat.
Dengan hanya melihat soal (tanpa menghitung di kertas) bahwa
Sn = 3n^2 + n
Sn = 3n^2 + n
Kita peroleh
b = 6 (dari 3 x 2)
a = 4 (dari S1 = 3 + 1)
b = 6 (dari 3 x 2)
a = 4 (dari S1 = 3 + 1)
U11 = 6.10 + 4 = 64 (Selesai)
Semua perhitungan di atas dapat kita lakukan tanpa
menggunakan alat tulis. Semua kita lakukan hanya dalam imajinasi kita. Ulangi
beberapa kali. Anda pasti akan menguasainya dengan baik.
Trik untuk menguasai rumus cepat matematika adalah
kuasai pula rumus standarnya – rumus biasanya. Dengan menguasai dua cara ini
Anda akan semakin terampil menggunakan rumus cepat matematika.
Tidak ada komentar:
Posting Komentar